Transcranial Doppler Monitoring of Intracranial Pressure Plateau Waves

نویسندگان

  • Danilo Cardim
  • Bernhard Schmidt
  • Chiara Robba
  • Joseph Donnelly
  • Corina Puppo
  • Marek Czosnyka
  • Peter Smielewski
چکیده

BACKGROUND Transcranial Doppler (TCD) has been used to estimate ICP noninvasively (nICP); however, its accuracy varies depending on different types of intracranial hypertension. Given the high specificity of TCD to detect cerebrovascular events, this study aimed to compare four TCD-based nICP methods during plateau waves of ICP. METHODS A total of 36 plateau waves were identified in 27 patients (traumatic brain injury) with TCD, ICP, and ABP simultaneous recordings. The nICP methods were based on: (1) interaction between flow velocity (FV) and ABP using a "black-box" mathematical model (nICP_BB); (2) diastolic FV (nICP_FV d ); (3) critical closing pressure (nICP_CrCP), and (4) pulsatility index (nICP_PI). Analyses focused on relative changes in time domain between ICP and noninvasive estimators during plateau waves and the magnitude of changes (∆ between baseline and plateau) in real ICP and its estimators. A ROC analysis for an ICP threshold of 35 mmHg was performed. RESULTS In time domain, nICP_PI, nICP_BB, and nICP_CrCP presented similar correlations: 0.80 ± 0.24, 0.78 ± 0.15, and 0.78 ± 0.30, respectively. nICP_FV d presented a weaker correlation (R = 0.62 ± 0.46). Correlations between ∆ICP and ∆nICP were better represented by nICP_CrCP and BB, R = 0.48, 0.44 (p < 0.05), respectively. nICP_FV d and PI presented nonsignificant ∆ correlations. ROC analysis showed moderate to good areas under the curve for all methods: nICP_BB, 0.82; nICP_FV d , 0.77; nICP_CrCP, 0.79; and nICP_PI, 0.81. CONCLUSIONS Changes of ICP in time domain during plateau waves were replicated by nICP methods with strong correlations. In addition, the methods presented high performance for detection of intracranial hypertension. However, absolute accuracy for noninvasive ICP assessment using TCD is still low and requires further improvement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The monitoring of relative changes in compartmental compliances of brain.

The study aimed to develop a computational method for assessing relative changes in compartmental compliances within the brain: the arterial bed and the cerebrospinal space. The method utilizes the relationship between pulsatile components in the arterial blood volume, arterial blood pressure (ABP) and intracranial pressure (ICP). It was verified by using clinical recordings of intracranial pre...

متن کامل

Relationship Between Brain Pulsatility and Cerebral Perfusion Pressure: Replicated Validation Using Different Drivers of CPP Change

BACKGROUND Determination of relationships between transcranial Doppler (TCD)-based spectral pulsatility index (sPI) and pulse amplitude (AMP) of intracranial pressure (ICP) in 2 groups of severe traumatic brain injury (TBI) patients (a) displaying plateau waves and (b) with unstable mean arterial pressure (MAP). METHODS We retrospectively reviewed patients with severe TBI and continuous TCD m...

متن کامل

Simultaneous recording of cerebrospinal fluid pressure and middle cerebral artery blood flow velocity in patients with suspected symptomatic normal pressure hydrocephalus.

CSF pressure (intracranial pressure, in one patient lumbar pressure) was monitored continuously for one night in 23 patients with suspected symptomatic normal pressure hydrocephalus (NPH) to identify patients who might benefit from subsequent shunt surgery. In 20 patients middle cerebral artery (MCA) blood flow velocity by means of transcranial Doppler sonography (TCD) and CSF pressure were rec...

متن کامل

Non-invasive assessment of intracranial biomechanics of the human brain

This review paper describes innovative methods and technology for non-invasive human brain physiological monitoring based on measuring the acoustic properties of the brain parenchyma. The clinical investigation of new technology shows the similarity between the invasively recorded intracranial pressure (ICP) and non-invasively recorded intracranial blood volume (IBV) pulse waves, slow waves and...

متن کامل

Transcranial Doppler Ultrasound: A Review of the Physical Principles and Major Applications in Critical Care

Transcranial Doppler (TCD) is a noninvasive ultrasound (US) study used to measure cerebral blood flow velocity (CBF-V) in the major intracranial arteries. It involves use of low-frequency (≤2 MHz) US waves to insonate the basal cerebral arteries through relatively thin bone windows. TCD allows dynamic monitoring of CBF-V and vessel pulsatility, with a high temporal resolution. It is relatively ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2017